Abstract:The authors of this white paper met on 16-17 January 2020 at the New Jersey Institute of Technology, Newark, NJ, for a 2-day workshop that brought together a group of heliophysicists, data providers, expert modelers, and computer/data scientists. Their objective was to discuss critical developments and prospects of the application of machine and/or deep learning techniques for data analysis, modeling and forecasting in Heliophysics, and to shape a strategy for further developments in the field. The workshop combined a set of plenary sessions featuring invited introductory talks interleaved with a set of open discussion sessions. The outcome of the discussion is encapsulated in this white paper that also features a top-level list of recommendations agreed by participants.
Abstract:State-of-the-art machine learning algorithms demonstrate close to absolute performance in selected challenges. We provide arguments that the reason can be in low variability of the samples and high effectiveness in learning typical patterns. Due to this fact, standard performance metrics do not reveal model capacity and new metrics are required for the better understanding of state-of-the-art.